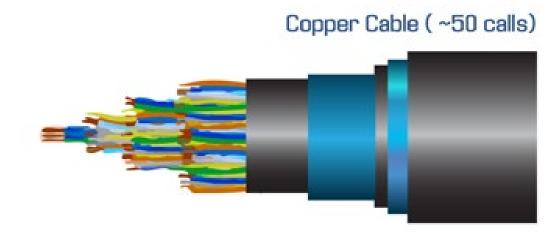


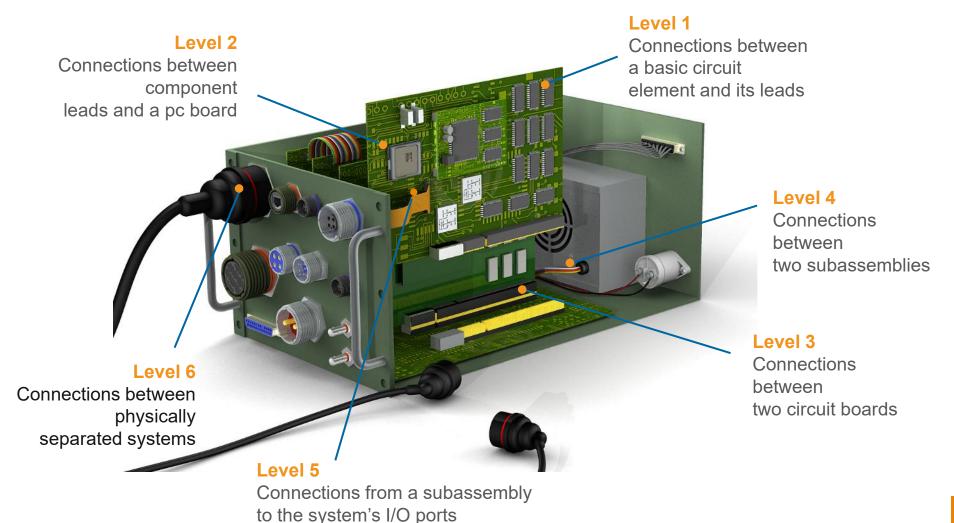
The Emergence of Optics in Levels of Electronic Packaging

Mark Benton Engineering Manager & Actives Product Manager - Rugged Fiber Optics Aerospace Defense and Marine Business Unit


Michael Walmsley, Global Product Management – Connectors Aerospace Defense and Marine Business Unit

EVERY CONNECTION COUNTS

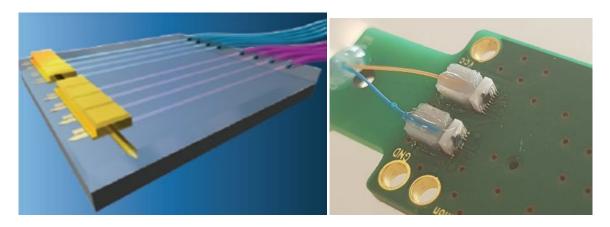
Why Use Fiber in Harsh Environments?

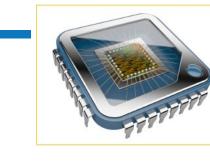

- Data Rate (Bandwidth)
- Low Signal Loss
- No EMI Interference
- Size
- Weight
- Safety
- Security
- Flexibility
- Cost

Each Interconnection Level Represents the Connection Between Two Levels of Electronic Packaging

LEVEL 1

Connections between a Basic Circuit Element and Its Leads


Processor to board – direct termination


Higher speeds, multicore, higher input/output count, increased power efficiency, ...

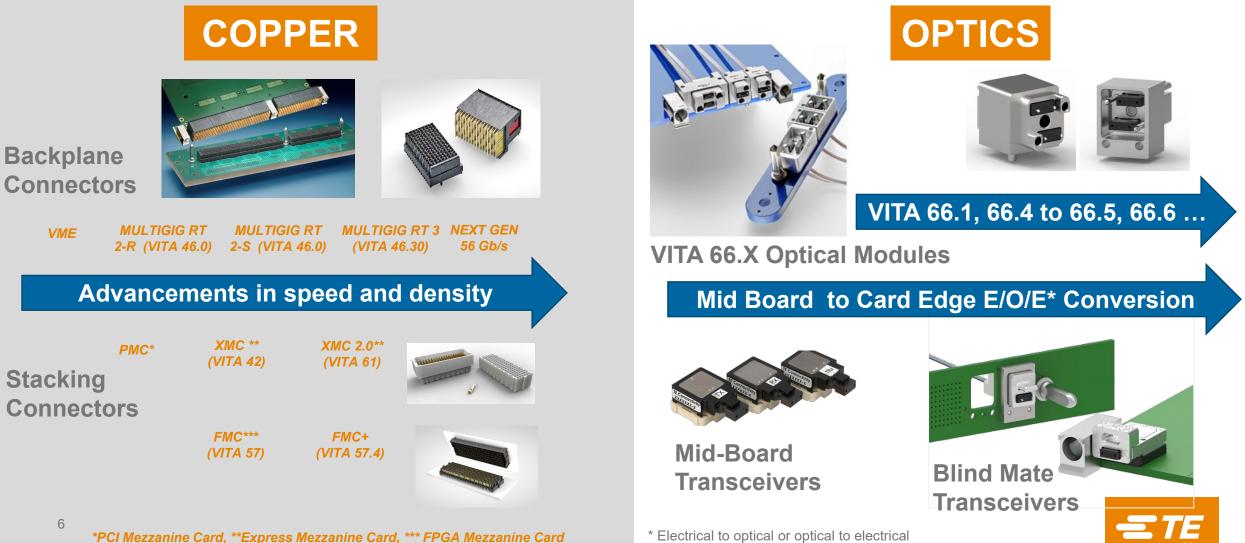
Optical equivalent is the direct connection of laser diode or photodetector chips to optical waveguides via flip chip techniques or aligned to cleaved fibers using V-groove or similar approaches.

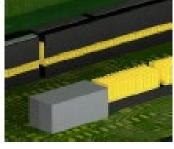
LEVEL 2

Connections between Component Leads and a PC Board

COPPER

Memory Sockets




Optical examples include the optical subassemblies used in transceivers and pluggable transceivers like SFP+, and ParaByte parallel mid-board transceivers

LEVEL 3 Connections between Two PC Boards



LEVEL 4 Connections between Two Subassemblies

Termini Technology

A801 Physical MIL-T-29504 Physical Contact

Expanded Beam

Higher Density Contacts and Cabling

Connector Technology

Contact

D38999 Ruggedized Circular PC & EB

Expanded Beam

Discrete Contact Circular & Rectangular Interfaces

OPTICS

Physical Contact and Lensed 12,24,48...MT Contacts

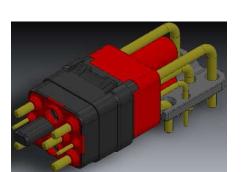
Optical Flex And Ribbon assemblies

MT Based Circular & **Rectangular Interfaces**

LEVEL 5

Connections between a Subassembly and System's I/O

COPPER


ARINC

Speed, modularity



Rigid Flex

Hybrid Discrete contact Board Mount Modules

Hybrid MT Based Board Mount Modules

Higher Density PC and Lensed MT Connectors

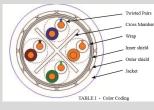
MT Based Circular Interfaces

LEVEL 6 **Connections between Physically Separated Systems**

Quadrax Contacts

CeeLok FAS-T Connector

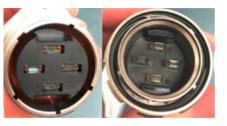
Advances in cable and isolation/cancellation



Physical Expanded Beam Contact assemblies Assemblies **Active Optical Cables – Optical** conversion in Level 6 assembly

Higher Density and Embedded E/O/E

OPTICS



MIL-DTL-32546.1 CeeLok **FAS-X** Connector

Discrete Contact based PC and expanded beam assemblies

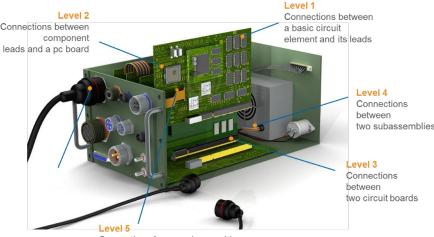
Higher Density PC and Lensed MT based assemblies

Summary Slide – Key Points

COPPER

- Copper interconnect technology is aimed at the need for increased density and speed
- Backplane connectors support 25 Gb/s and higher
- Contact density has increased 2-3X
- Higher speed copper I/O cabling

- Fiber can play a significance role as
 - Data-rate and distances increase,
 - where weight and space is tight
- Fiber interconnect technology
 - Reliable, time-tested ruggedness
 - Keeping pace with advances in transceiver packaging and density


Design Considerations – High Speed Copper or Fiber Optics?

Design Tutorial – Copper or Fiber?

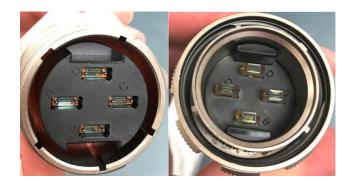
Levels of Packaging, Application Density, Data Rate, Transmission Distance & Operating Environment drive selections for...

- Operating Environments:
 - Internal or External Harness?
- High Speed Copper or Optical interface:
 - 100 Mb/s vs. 25-50 Gb/s? and link length?
- Optical Transceivers:
 - Data rates, distance, pigtailed or connectorized?
 - Discrete fiber connections or parallel style?
 - Mid-board location or card edge?

Connections from a subassembly to the system's I/O ports

Physical Contact (PC) or Expanded Beam (EB)

Which Fiber Optic Contact Technology should I choose?



PC Connector

Connector

Comparison of PC and EB Connector Technologies

Performance Criteria	PC	EB
Insertion Loss	****	**
Return Loss (SM)	****	**
Return Loss (SM) – Unmated	*	**
Lateral Connector Misalignment	*	****
Connector Angular Tilt	****	*
Mating Durability	**	****
Water Exposure	***	**

Performance Criteria	PC	EB
Dust Exposure	*	***
Vibration Susceptibility	**	***
Repair	**	**
Cleanability	**	****
Wear	*	****
Wavelength Range	****	**

Thank You

© 2019 TE Connectivity CeeLok FAS-X, CeeLok FAS-T, MULTIGIG RT, TE Connectivity, TE, TE connectivity (logo) and EVERY CONNECTION COUNTS are trademarks owned or licensed by the TE Connectivity Ltd. family of companies. ARINC is a trademark of ARINC Incorporated. VITA is a trademark of VITA Corporation. Other logos, product(s) and/or company names might be trademarks of their respective owners.

